Biguanides and targeted anti-cancer treatments
نویسندگان
چکیده
Drug repositioning and molecularly targeted novel drug development are two contrasting strategies in cancer research. Yet, certain combinations of the two may bring together the best of both worlds. Drug repositioning, i.e. the use of a drug for treating diseases other than the drug-specified, is a strategy to advance patient care more quickly and efficiently. The idea was promoted in 2012 through the Discovering New Therapeutic Uses for Existing Molecules program, initiated by NIH. Several drugs used for other purposes have proved to be effective anti-cancer agents, including thalidomide, aspirin, and celecoxib. In contrast, novel drug development is a lengthy process. Molecularly tailored drugs fail for various reasons including inadequate bioavailability and adverse side effects, and are often very expensive. Despite drawbacks to targeted drug development, there are also successes in this area of research. Cancer therapeutics designed to inhibit kinases involved in cell growth and survival pathways are potent and selective in the short term. By directly blocking cell signaling, often at the source of over-activation, these drugs kill cancer cells. One example of success in targeted therapy is the development of BRAFV600E inhibitors, vemurafenib and dabrafenib, and their ability to prolong progression-free survival time in melanoma patients. However, a major problem with monotherapy is the inevitable development of resistance. Even with combination treatment using specific inhibitors, such as BRAFV600E and MEK inhibitors in melanoma, improvement in patient outcome is limited [1,2] and resistance emerges. There is increasing interest in combining targeted inhibitors with common metabolic regulators to hinder resistance. This unique combination reaps both the intrinsic benefits of repurposing drugs and the selectivity of targeted therapy. The major biguanides, metformin and phenformin, have known pharmacokinetics, high safety profiles, and are relatively inexpensive. Metformin in particular is widely used for treatment of patients with type 2 diabetes. Although there is evidence in literature for both pro-cancer and anti-cancer effects of metformin on cancer cells, a clear association between metformin therapy and reduced risk of cancer in diabetic patients exists. Recent studies point out direct cellular benefits of combining biguanides with current targeted therapy. Biguanides in combination with targeted inhibitors synergistically reduced cell viability and inhibited tumor growth in BRAFV600E-positive and NRAS mutant melanoma cells [3,4]. In the latter case, even when the driver NRAS mutation was not targeted itself, inhibition of a downstream molecule was more effective when used in combination with metformin [4]. Another study determined that metformin …
منابع مشابه
Energy balance at the organism and cellular level: effects of biguanides
Metformin, an inhibitor of OXPHOS, is widely used for treatment of type II diabetes (T2D). A key site of action in diabetes treatment is liver, where the drug achieves a relatively high concentration following oral administration, leading to inhibition of gluconeogenesis and reduction of the hyperglycemia and hyperinsulinemia of T2D. As high levels of insulin have been associated with poor prog...
متن کاملMetformin and cancer: Quo vadis et cui bono?
How many lives have already been saved by the anti-cancer drug metformin? Inadvertently perhaps, among the millions of type 2 diabetics with occult or known cancers and who have been prescribed metformin since the 1950s, thousands may have benefited from the anticancer properties of this first-line pharmacotherapy. Quo vadis? Now, researchers aim to move metformin from a non-targeted stage of c...
متن کاملOncobiguanides: Paracelsus' law and nonconventional routes for administering diabetobiguanides for cancer treatment
"The dose makes the poison", the common motto of toxicology first expressed by Paracelsus more than 400 years ago, may effectively serve to guide potential applications for metformin and related biguanides in oncology. While Paracelsus' law for the dose-response effect has been commonly exploited for the use of some anti-cancer drugs at lower doses in non-neoplastic diseases (e.g., methotrexate...
متن کاملEffects of metformin and other biguanides on oxidative phosphorylation in mitochondria
The biguanide metformin is widely prescribed for Type II diabetes and has anti-neoplastic activity in laboratory models. Despite evidence that inhibition of mitochondrial respiratory complex I by metformin is the primary cause of its cell-lineage-specific actions and therapeutic effects, the molecular interaction(s) between metformin and complex I remain uncharacterized. In the present paper, w...
متن کاملProduction and Evaluation of Specific Single-Chain Antibodies against CTLA-4 for Cancer-Targeted Therapy
Background: Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) molecules are expressed on T-cells and inhibit their function by inhibiting activation of subsequent T-cell molecular pathways. Blocking of CTLA-4 inhibits the growth of malignant tumor cells. Anti-CTLA-4 monoclonal antibodies activate the immune system against cancer. Due to several advantages of single-chain antibodi...
متن کامل